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Theoretical considerations and available experimental studies are combined for a
discussion on the aerodynamic mechanisms of lift generation in hovering animal flight.
A comparison of steady-state thin-aerofoil theory with measured lift coefficients
reveals that leading edge separation bubbles are likely to be a prominent feature in
insect flight. Insect wings show a gradual stall that is characteristic for thin profiles
at Reynolds numbers (Re) less than about 10°. In this type of stall, flow separates
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at the sharp leading edge and then re-attaches downstream to the upper wing surface,
producing a region of limited separation enclosing a recirculating flow. The resulting
leading edge bubble enhances the camber and thickness of the thin profile, improving
lift at low Re. Some of the results for bird wing profiles indicate that the complications
of leading edge bubbles might even be found in the fast forward flight of birds.

It is pointed out that the usual quasi-steady aerodynamic analysis employed for
flapping animal flight is incomplete. In addition to the translational motion of the
wings, the general quasi-steady formulation should also consider the effects of profile
rotation on lift production. Circulatory lift towards the ends of half-strokes should
thus be substantially greater than predicted by the usual analysis for hovering,
because of the high rates of increase of the angle of attack. Combining this result with
the profile flexion observed at the beginning of half-strokes, it is argued that the
quasi-steady circulation may be nearly constant during a half-stroke. If this is so, then
the mean lift would be proportional to the mean flapping velocity instead of the mean
square, as assumed in the usual analysis.

The results from unsteady aerofoil theory provide an insight into the influence
of wake vorticity on the bound vorticity of the wings. Vorticity shed into the wake
always causes theinstantaneous circulation to change moreslowly than the quasi-steady
assumption would predict: the slow growth of circulation for a wing suddenly set into
motion, the Wagner effect, illustrates this process. For animals hovering with a
horizontal stroke plane, the growth of circulation on each half-stroke should be even
slower because of the influence of vorticity shed on the preceding half-stroke. The
maximum circulation actually achieved during a half-stroke should thus be much
lower than quasi-steady predictions. In spite of the useful discussions prompted by
unsteady theory, it cannot yet be rigorously applied to hovering animal flight,
however; modern research in unsteady aerodynamics is attempting to relax various
limitations of the theory, but progress to date still lags far behind what is required
for an analysis of hovering.

Some hovering animals require more lift than their wings can produce in steady
motion. The only conventional unsteady mechanism that can generate enhanced lift
is delayed stall. Weis-Fogh proposed a novel mechanism, the ‘fling’, which creates
circulation when the left and right wings come into contact during rotation at the
end of the wingbeat. The fling circulation provides lift over the subsequent half-stroke,
and can exceed the maximum value for steady motion. Variants on the fling were
described in paper III: the ‘partial fling’, the ‘near fling’, and the ‘peel’. The
effectiveness of these mechanisms in creating circulatory lift, and their possible roles
in hovering flight are examined in this paper.

Rough estimates indicate that the vorticity shed during isolated wing rotation
(without any interference from the image wing) is probably greater than the vorticity
bound to the wing during the translational phase of the wingbeat. If this rotational
vorticity is shed from the leading edge, it could then be used for circulatory lift as
a re-attached leading edge separation bubble over the subsequent half-stroke. Flexion
of the wing profile during rotation was observed for all of the insects of paper III,
and it is suggested that this ‘flex’ mechanism could facilitate the required leading edge
vortex-shedding. The delayed pronation found for hover-flies using an inclined stroke
plane may provide another method of creating circulation by isolated rotation.

These considerations of rotational mechanisms stray far from the usual quasi-steady
interpretation of Rovering flight. The strong vorticity shed during rotation must have
an important, if not dominant, influence on the aerodynamics. The postulated
rotational mechanisms simply offer an optimistic interpretation of that influence.
With a continuous series ranging from isolated rotation to a complete fling, these
mechanisms should also be applicable to most, if not all, hovering animals.
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1. INTRODUCTION

The wing kinematics in hovering flight are greatly exaggerated when compared with ortho-
dox wing motions. Indeed, the large amplitude flapping and rotation in the absence of a mean
flight velocity make even the most severe examples of the catastrophic flutter of man-made wings
seem like gentle callisthenics. What are the aerodynamic mechanisms associated with these
motions? Until the appropriate experimental studies are done this question cannot be answered
with any certainty, and we must be content with a more speculative discussion for now. This
paper offers such a discussion, based on theoretical considerations and the available experimental
investigations. I hope that the presentation proves useful for biologists less familiar with the
aerodynamic literature, and that the unavoidable simplifications and omissions are not
misleading. Further details may be found in many aerodynamic texts, and I have found the
following particularly useful: Prandtl & Tietjens (1957), Mises (1959), Duncan ef al.(1970),
Karmdn & Burgers (1935), Fung (1969) and Bramwell (1976). Maxworthy (1981) has written
an excellent short review of the fluid dynamics of insect flight which, although primarily
intended for aerodynamicists, is admirably readable, concise and clear. McCroskey (1982)
provides a similar review of modern research on unsteady aerofoils.

A few preliminary notions and definitions are required before beginning in earnest. Except
where noted, the discussions apply to two-dimensional aerofoils: wings of infinite span, with the
same streamline picture for any cross-section perpendicular to the span. It is usually assumed
that the three-dimensional flow around a wing of finite span can be derived from the two-
dimensional considerations, and this assumption is generally well supported by experiments
when the aspect ratio is greater than about 4. Each spanwise element of the finite wing is then
treated as a two-dimensional aerofoil with a relative velocity that includes the induced velocities
of vortices in the wake. In this manner, three-dimensional effects can be represented by a small
change in the local effective angle of attack for a wing element. It should be noted, however,
that substantial quantitative and qualitative differences are sometimes found between two- and
three-dimensional results (Carpenter 1958; Wagner 1980; McCroskey 1982). Maxworthy’s
(1979) experimental investigation of Weis-Fogh’s (1973) ‘fling’ mechanism is particularly of
interest for hovering insect flight. Maxworthy discovered a strong spanwise transport of
vorticity towards the wing tip within the large leading edge bubble created by the fling (§6.1),
and suggested that this stabilizes the bubble more that two-dimensional considerations would
predict. Whether or not this phenomenon of spanwise transport is more generally applicable
to insect flight is unknown at present.

The flight velocity V is negligible in ‘hovering’, so the velocity of the wing through the
undisturbed air is simply given by the flapping velocity U. The geometric angle of attack o is
therefore measured with respect to the path of the wings, as in paper III. The effective angle
of attack a,. is measured from the relative velocity vector, and includes the effects of wake
vorticity. The angle of attack coresponding to zero lift is denoted by «,: for symmetrical profiles
a, 1s zero, but it is negativ.e for cambered profiles. The angle of incidence a’ is measured with
respect to the zero lift angle, and is equal to a —a,. Similarly, the effective angle of incidence a;
is given by a,.—a,. The angles of attack considered in theoretical aerodynamics are usually
small, and are expressed in radians so that small-angle trigonometric approximations can be
employed. The experimentalists, however, prefer to measure angles in degrees. Except where
noted for some equations, I shall follow the convention of the experimentalists.

6 Vol. 305. B
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2. STEADY MOTION
2.1. Circulatory lift
2.1.1. Theory

Consider the simplest aerodynamic situation first: an aerofoil in steady linear motion with
velocity U and an angle of attack a well below the stall. If the aerofoil did not generate lift,
then the average air pressures above and below it would be equal and, by Bernoulli’s theorem,
the average air velocities along the upper and lower surfaces must be equal as well. The flow
pattern corresponding to this is shown in the first term of the pictorial equation of figure 1;
the streamlines in front of the section are symmetrical with those behind, and the flow leaves

Ficure 1. The flow around an aerofoil must leave the trailing edge tangentially to avoid an infinite velocity there.
The addition of a unique circulatory flow to that associated with linear motion of the section satisfies this
condition.

the wing ahead of the trailing edge at a separation point on the upper surface. This flow pattern
is physically impossible, however, because the air velocity becomes infinite at the sharp trailing
edge as it moves from the lower to upper surface, producing an infinite shear stress at the trailing
edge even when viscosity is negligible. The fluid velocity must remain finite instead, and this
occurs only if the flow comes off the trailing edge smoothly and tangential to it: the Kutta
condition. By adding a circulating flow (the second term of figure 1) to that which would exist
if no lift were produced (the first term), the average air velocity is increased over the upper
surface and decreased along the lower, moving the rear separation point towards the trailing
edge. The circulation I around the section is a measure of the velocity difference produced
by the circulating flow, which may be thought of as a vortex ‘bound’ to the section. There
is one, and only one, value of I" that places the separation point at the trailing edge (figure 1)
and avoids an infinite velocity there: this unique value is the only one consistent with steady
motion of the aerofoil. The velocity difference associated with this circulation must correspond
to a pressure difference across the section, and thus accounts for the generation of lift.

The lift per unit span due to circulation around an aerofoil in steady motion is given by the
Kutta—Joukowski theorem as

L' = pUT, (1)

where p is the density of air (or other fluid). The unique value of the circulation satisfying the
Kutta condition for linear motion, or translation, is

It = ncUsina’ = neUa’, (2)
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and when this is substituted in equation (1) it determines the lift for a given velocity, angle
of incidence and chord ¢. (The approximation is valid for small values of &’, which must be
expressed in radians.) The expression for lift in terms of the lift coefficient Cy,

L = peUcy, (3)
may be combined with equations (1) and (2) to derive
Cy, = 2nsin o’ = 271a’. (4)

This theoretical expression applies to all thin sections in translation: the profile shape only affects
the zero lift angle a,, which is incorporated in «’.

The resultant circulatory lift force acts at the one-quarter chord point according to thin
aerofoil theory, and this is true for unsteady motion as well as the steady case. For many
purposes, therefore, we may regard the bound vortex as concentrated at a distance ¢ behind
the leading edge. It must be understood that the ‘bound vortex’ is only a useful theoretical
construct, though, and not a physical reality. The theory additionally shows that the angle of
incidence should be measured at the three-quarters chord point: this result is also valid in
general and is required for some special cases of wing motion, such as rotation about a
spanwise axis.

2.1.2. Experiment

Experimental results for conventional profiles at high Reynolds numbers (Re greater than
about 10°) generally confirm equations (2) and (4) at angles of incidence below stall, except
for the fact that observed values of I'y and Cy, are about 90 %, of the predicted ones (Fung 1969).
Very few studies have been made at Re less than 10, however, and investigations on real or
model animal wings are even more scarce. The available results for insect wings, which are
most relevant to this study, were briefly discussed in paper I and are presented in figure 2. Cy,
is plotted against the drag coefficient Cp, in the usual manner of polar diagrams, with the angle
of attack indicated on the curve. These measurements were made on real wings of finite span,
instead of models giving approximately two-dimensional flow, and cannot be compared directly
with the theory without correcting them for the downwash of trailing vortices (paper V). The
downwash depends on the circulation distribution along the span, that is the circulation around
each wing element, and since this is unknown an accurate correction cannot be made.
Furthermore, the measurements for the locust forewing ( Jensen 1956) were made in a wind
tunnel that produced a velocity gradient from wing base to tip, simulating the wing velocity
in flapping flight; this may alter the circulation distribution and downwash pattern considerably
from that obtained in an orthodox wind tunnel, as used for the Drosophila (Vogel 1967) and
Tpula (Nachtigall 1977) wings. Nachtigall (1981) has measured the lift of model locust wings
placed in the parallel airstream of a conventional tunnel, and also rotated like a propeller in
still air. With use of his results for a Reynolds number of 1100, an approximate comparison
can therefore be drawn with Jensen’s experiments at Re = 2000. Both authors measured polars
for a flat profile of the forewing, which is found during most of the downstroke, and a cambered
profile, which results from depression of the vannal region as a flap late in the downstroke.
They also present results for the Z profile of the early upstroke; this profile seems peculiar to
locusts in fast forward flight, however, and will not be discussed here.

Theslope of the lift-incidence curve,dCy,/da’, has a theoretical value of 21 for two-dimensional

6-2
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aerofoils at small angles of incidence. This value decreases with the aspect ratio for wings of
finite span, and is also dependent on the circulation distribution. At small &', dCy,/da’ is
approximately 2.2 for the flat Drosophila wing, 3.6 for the cambered one, 4.0 for the Tipula wing,
4.0 and 5.0 for Jensen’s flat and cambered locust forewings, and 5.3 for Nachtigall’s (1981)
model locust forewings measured in a conventional wind tunnel. These results are generally
comparable with two-dimensional theory if crudely corrected for downwash, but a firmer
conclusion cannot be justified because of the assumptions necessarily invoked. An interesting
point is that dC,/da’ increases with camber for Drosophila and Jensen’s locust wings, although
the theory predicts that this should not happen.

] ¥ ) ¥ ] 1
10 20
1.2F locust -
20
- .
10
0.8F 4
SOk 10 .
w 0
0.4} h
0
1 1 1 1 1 1
0 04 0.8 1.2

Ficure 2. Polar diagrams of insect wings. The angle of attack is given in degrees along each curve. Reynolds numbers
are 2000 for the locust Schistocerca gregaria forewing ( Jensen 1956); 1500 for the Tipula oleracea wing (Nachtigall
1977); and 200 for the Drosophila virilis wing (Vogel 1967). Open circles are for flat wings of Drosophila and
Schistocerca, closed circles are for cambered wings.

Conventional wings never reach the maximum theoretical value of Cy, (= 2rn) because they
stall long before &’ reaches 90°: the flow breaks away from the upper surface near the leading
edge, producing a thick wake with high drag and destroying the lifting ability of the wing.
As a’ increases beyond small angles, Cy, rises more slowly until a maximum lift coefficient Cy, max
is reached, and the lift then decays more or less sharply as the wing stalls with further increases
of o’. It should be noted that Cp, m,y is not affected by the aspect ratio, which only alters the
angle of incidence at which Cy, jp,x is reached. Values of Cy, 4 for the insect wings are 0.6
and 0.8 for the flat and cambered Drosophila wings (Re = 200), which compares very well with
the results of Thom & Swart (1940) for a flat-bottomed aerofoil at similar low Re, and 0.85
for the Tipula wing (Re = 1500). Values for the locust forewing are substantially higher in
general, even though the Reynolds numbers are comparable with the Tipula wing: Jensen’s
values are 1.1 and 1.3 for the flat and cambered profiles, whereas Nachtigall’s model wings
gave 0.75 and 1.25 respectively in a parallel airstream. Lift coefficients were not presented for
Nachtigall’s models rotating like propellers, but the maximum lift force was about the same
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for both profiles. This is an anomalous result, implying equal values of Cy, 1,y instead of an
increased value with camber, as is normally found.

The most interesting feature of the insect wings is the absence of the abrupt stall commonly
found for conventional, thick profiles at high Re. The wings of Drosophila and Tipula show a
very gradual stall, giving values of Cp, near Cp, ., at angles of attack up to 50°. Jensen’s
experiments did not extend to such high a, but Nachtigall’s locust models clearly exhibited a
‘mushy’ stall like the Tipula wing.

(a)

FiGure 3. (a) The large leading edge separation bubble, enclosing a recirculating flow, for a model dragonfly profile
at large incidences. (b) Small bubbles filling the corrugations are clearly seen at low incidences. The envelope
around these bubbles forms a smooth effective profile for the corrugated insect wing. Adapted from Newman
et al. (1977).

A gradual stall is characteristic for thin profiles at Re less than about 10°, and this ‘thin-
aerofoil” stall is one of the three basic types discussed by McCullough & Gault (1951), Crabtree
(1959) and Tani (1964). The boundary layer tends to remain laminar at these Reynolds
numbers, but the sharp deceleration as the flow rounds the thin leading edge causes the laminar
boundary layer to break away from the upper wing surface. The separated layer mixes with
the surrounding air, thus gaining enough kinetic energy to become turbulent. The energized
layer then re-attaches to the downstream upper wing surface, forming a leading edge separation
bubble (figure 3a). In contrast to the well separated flow normally associated with stalling or
the wake behind a bluff body, the bubble is a region of limited separation enclosing a
recirculating flow. The re-attachment point moves progressively rearward with increasing
incidence, producing a long bubble that may eventually extend beyond the trailing edge.
Formation of the long bubble is often indicated by a kink in the values of Cy,, like the one around
a equal to 20-25° for the Tipula wing. The separation bubble clings tenaciously to the profile,
providing an envelope around which the oncoming air flows. Small bubbles have also been
observed trapped in the valleys between veins on insect wing models (Rees 1975; Newman et
al. 1977); as shown in figure 3, the envelope around these bubbles results in a smooth effective
profile for the corrugated insect wing.

A thorough investigation of stalling behaviour is lacking for Re less than about 10%, which
is the range applicable to insect flight. It is doubtful whether one can speak of transition to
turbulence in the separated laminar boundary layer at these low Re, but leading edge separation
bubbles are clearly evident around thin wing models at Re of 200 (Vogel 1967) and even
32 (Maxworthy 1979), where turbulence cannot occur. Bubble re-attachment is promoted at
these very low Re by an enhanced diffusion of vorticity in the separated laminar layer, which
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is analogous to the increased diffusion provided by transition to turbulence at higher Re
(Lighthill 1973). Below some critical Re the bubble thus re-attaches in a laminar form; the
locust and Tipula wings are also likely to fall into this laminar re-attachment class, with Re of
2000 and 1500 respectively. Regardless of the re-attachment mechanism, we should expect
separation bubbles to govern the stalling behaviour of insect wings, and those bird and bat
wings with a thin leading edge. The importance of a sharp leading edge in assuring separation
of the laminar boundary layer, and of the resulting separation bubble in determining the
aerodynamic characteristics of the profile, is demonstrated by Nachtigall’s (1977) results: the
polar of a flat model of the Tipula wing was very similar to the real wing, implying that
corrugations and surface details have little effect on the wing performance at that Re. Vogel
(1967) found some differences between real and model wings at the lower Re of 200, however;
more experimental work is obviously required in this fascinating Re range.

Although not appropriate for this study, lift and drag coefficients have been measured for
wing models in two-dimensional flow at higher Re: a model dragonfly profile at Re of 12000-25 000
and a larger model at 25000-35000 (Newman et al. 1977), and three profiles from a pigeon
wing at Re of 27000, 54000 and 80000 (Nachtigall 19794). For the dragonfly model in the
lower Re range, dCy,/de’ at small angles of incidence is about 5 and is again comparable with
theory. The dragonfly and pigeon profiles show a different behaviour at Re greater than 25000,
though; dCy,/da’ is about 11 and 14 respectively, around twice the theoretical value. Newman
et al. explain their result by changes in the effective profile produced by separation bubbles,
an idea that is supported by their flow visualization studies. Figure 3 4 shows the bubbles around
the dragonfly section at low values of @’, and the large posterior bubble on the lower surface
should be noted in particular. As the angle of incidence increases (figure 3a), this bubble
disappears and a leading edge bubble grows along the upper surfaces, increasing the camber
of the effective profile with a’. The theoretical value of 2x for dC,/de” applies to a fixed profile,
and is not valid for the variable profile provided by the separation bubbles. Although this
phenomenon is not apparent in the results at Re less than 25000, where values of dCp,/da’
are close to theory, it may be involved in the differences between flat and cambered Drosophila
and locust wings at much lower Re.

The effect of separation bubbles on dCy,/da’ is further complicated by the results of Withers
(1981) for detached bird wings at Re from 10000 to 50000. His values for dCy,/da’ ranged
from 2.9 to 5.7, and were always less that 2. This might imply that the effective profile for
real, finite span wings is not altered by separation bubbles over that Re interval, but the absence
of an abrupt stall at large angles of attack indicates that such bubbles were present; indeed,
his results for swift and petrel wings show tell-tale kinks in the values of Cf,, although not as
pronounced as those for the two thinner profiles from a pigeon wing in Nachtigall’s (1979a)
two-dimensional study.

When compared with the experimental data, the theory of thin aerofoils may seem of little
use in an analysis of animal flight, even for cases of steady motion such as gliding flight. At high
Re, the circulation satisfying the Kutta condition agrees well with experiment because the flow
follows the profile smoothly. Separation bubbles may be present at Re less than 10°, however,
and the effective profile must be taken around them. Leading edge bubbles should prove
particularly useful, giving wings an enhanced camber and thickness and thus improving lift
at low Re. The Kutta condition still applies, but the effective profile may change with angle
of attack: this alters the zero lift angle a,, and so there is no longer a linear correspondence
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between @’ and «. The effective profile cannot be predicted by theory, and so Cy, must be
measured experimentally. The circulation around the wing can then be calculated by using
equation (1) from the Kutta—Joukowski theorem and the definition of Cy, in equation (3):

I'=LUcy. (5)

Nachtigall’s (1979a) results demonstrate that dCy,/da’ is much greater than 2z for pigeon
profiles at Re up to 80000: thus the complications of separation bubbles may apply even to
the fast forward flight of many birds and bats. The value of dCy,/da” in theories of fast flapping
flight based on equation (4) (see, for example: Holst & Kiichemann 1941; Lighthill 1977;
Phlips et al. 1981) may therefore need to be modified after future experimental work
investigates the differences between the results of Nachtigall (19794) and Withers (1981).
Indeed, a great deal of experimental work is required before we can make satisfactory empirical
adjustments to the conceptual and theoretical framework of thin aerofoil theory.

2.2. Drag

The lift on an aerofoil is ultimately attributable to viscosity. The purpose of the Kutta
condition, which determines the amount of circulatory lift produced, is to ensure that the viscous
shearing stresses at the trailing edge do not become infinitely large. In a fluid with zero viscosity,
an inviscid fluid, this problem would not arise and the streamlines would be those for zero lift
in figure 1. The tribute levied for this useful phenomenon of lift is the accompanying drag force,
an unavoidable consequence of viscosity.

There are two components of drag for a two-dimensional aerofoil. The first is skin friction,
which is a direct result of the viscous shearing stresses in the boundary layer and can be
minimized by making the surface of the section very smooth. The boundary layer loses energy
because of these stresses, and it separates from the aerofoil before reaching the trailing edge.
Although some separated layers may re-attach to the profile, forming separation bubbles, the
boundary layer still cannot quite reach the trailing edge. The wake produced by this final
separation is a region of low pressure, giving rise to the second component of drag, pressure drag.
This component is small, of course, for thin sections parallel to the flow. The sum of these two
components is usually called the profile drag Dy, and the profile drag coefficient Cp, pr, is

defined b ’
efined by Dipeo = $peU*Cry, prs (6)

where the prime denotes a force per unit span as before. For most sections the profile drag varies
but little for angles of incidence well below stall, but the pressure drag component increases
at larger angles: a plot of Cp pr, against a’ often shows a relation that is approximately
parabolic.

The profile drag is also influenced by the Reynolds number and the state of the boundary
layer. That part of Cp pr, due to skin friction is less for laminar boundary layers than turbulent
ones, where the velocity gradient is steeper, and it decreases with Re for both cases. For a smooth
flat plate parallel to the flow a gradual transition from laminar to turbulent boundary layer
occurs around Re equal to 3 X 10°, but this critical Re is markedly lowered by surface roughness.
The kinetic energy of a turbulent boundary layer is relatively higher, which delays the final
separation and reduces the pressure drag contribution to the profile drag coefficient. This effect
is usually greater than the increase in skin friction, resulting in a drop of Cp_ p, at transition
to a turbulent boundary layer.
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Although the profile drag coefficient can be calculated in some cases, it must be experimentally
determined in general. This is especially true for the complex flows associated with separation
bubbles. Cp ;o should be measured on models that approximate the two-dimensional flow
around aerofoils of infinite span, by using high aspect ratios or endplates on the model. If this
is not done, a third drag component appears, the nduced drag. This drag arises from a tilt of
the relative velocity vector by the downwash; hence it is related to the lift of the finite span
wings (paper V). The induced drag coefficient is proportional to C%, and so its contribution
to the polar diagram consists of a parabola lying on its side and opening to the right. The
induced drag is a function of aspect ratio and circulation distribution: it can be calculated if
these are known, and then subtracted from the total drag coefficient to obtain Cp ;. The
importance of two-dimensional results cannot be over-emphasized for flapping flight; they are
essential to the development of any generalized analytical model. Many aerodynamic parameters
depend on the circulation distribution, which will vary under different conditions: angles of
attack along the span, the wing shape, the ratio of flapping to flight velocity, and the inclination
of the stroke plane among others. By using two-dimensional data in vortex theories, such as
the one presented in paper V, the induced drag and other three-dimensional effects can be
calculated for these different conditions from a single set of experimental results.

The polar diagrams in figure 2 were obtained from real wings, and so a contribution from
induced drag appears in the drag coefficient. This will be negligible when lift is small, however,
and we may use the minimum value of the drag coefficient Cp i, as an estimate of the
minimum profile drag coefficient for the wings: Cp m;p is about 0.34 for the flat and cambered
Drosophila wings, 0.10 for the Tipula wing and Nachtigall’s flat and cambered locust wing
models, and 0.045 and 0.072 for Jensen’s flat and cambered locust wings. At these low Re the
boundary layer should be laminar, and skin friction will form a large part of the profile drag.
Hence it is informative to compare these values with the drag coefficient for a smooth flat plate
at an angle of attack equal to zero, because the drag is entirely due to skin friction for this case
and is a theoretical minimum. The well known solution of the laminar boundary layer equations
by Blasius gives the drag coefficient due to skin friction Cp, ; as

Cp.; = 2.66/Rd, (7)

for perfect laminar flow over the smooth plate. The Reynolds number is based on the profile
hord:

chord Re = cU/v, (8)
where the kinematic viscosity v is 1.46 X 107° m~2 57! for air at 15 °C and normal atmospheric
pressure. Although Cp, i, is greater than Cy ¢ in practice, because of pressure drag and
irregularities in the boundary layer flow, it is still commonly found that Cp ,;, is inversely
proportional to Re* over a large range. Vogel (1967) presents data on the Drosophila wings for
four values of Re, from which the approximate relation can be derived:

CD,min = 4.8/Re%. (9)

Thus the minimum profile drag is nearly twice the skin friction of a flat plate parallel to the
flow. Equation (9) is also in good agreement with the results of Thom & Swart (1940) for a
flat-bottomed profile at low Re, and it predicts Cp 5, for the Tipula wing quite well (0.12
compared with the measured 0.10). The value predicted by equation (9) for the locust wing
is 0.11, which is considerably more than Jensen’s measurements but comparable with
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Nachtigall’s model experiments. It should be noted, however, that Cp, ¢ for a Reynolds number
of 2000 is 0.059. The minimum drag for the flat locust forewing, consisting of skin friction and
pressure drag, is less than the skin friction drag of a smooth flat plate. This is not theoretically
possible, so Jensen’s drag values for the flat locust forewing should be rejected, and probably
the cambered wing as well. Although equation (9) gives a satisfactory fit to the meagre data
on insect wings over Re from around 100 to several thousand, except for Jensen’s values, it does
not agree with the results of Newman et al. (1977) on dragonfly profiles at Re greater than 10
The induced drag will be nearly constant over the broad plateau of Cy, for the Drosophila and
Tipula wings, so the increase of Cp, with « in this region represents an enhanced profile drag
at approximately the same Cy,. The wings of hovering insects operate at large geometrical angles
of attack during much of each half-stroke, typically around 35° (paper I1I), which places them
near the middle of the plateau. The comparison is not exact because the effective angle of attack,
which depends on the circulation distribution, will be somewhat different for the two cases.
Nonetheless, the wings are still operating in an unfavourable region of the polar diagram for
steady motion: an unnecessarily large profile drag would be incurred for the lift generated.

3. THE QUASI-STEADY ASSUMPTION

The simplest analysis for a wing in unsteady motion is a direct extension of the preceding
section and involves the quasi-steady assumption: the instantaneous forces on an aerofoil in
unsteady motion are assumed to be those corresponding to steady motion at the same
instantaneous velocity and attitude. Thus U and &’ may change with time, but their past history
is of no importance to the present. The instantaneous lift experienced by a section is then solely
dependent on the circulation satisfying the Kutta condition for motion at that moment.

The quasi-steady analysis does not consist of a straightforward application of the theory and
experiments for steady linear motion, although all animal flight studies (including my own)
have previously done so. In addition to translation, the general formulation of the quasi-steady
approximation also includes rotation of the section with angular velocity w (= de/d¢) about some
axis located a distance x, behind the leading edge (Fung 1969). This rotation will alter the
airflow around the section, and the Kutta condition must be applied to the net motion resulting
from translation and rotation. The required circulation Iy for the quasi-steady case is simply
the sum of that satisfying the translational motion, I, and that satisfying rotation, 7.
Application of the Kutta condition to rotational motion yields

I = mwc*(§— %), (10)

where £, is equal to x,/c and w is measured in radians per second. It was shown in paper III
that the axis of wing rotation lies somewhere in the anterior half of the wing, so £, is less than
1 and is likely to be about }. The total quasi-steady circulation I’y around the section is given
by Iy =T+ T, =ncUsina’ +nwd(}—4%) =~ ncUa + (we/U) (§—4%0)]- (11)
The expression in square brackets represents the angle of incidence at the three-quarters chord
point due to translation and to rotation about the axis £,. The ratio we¢/U was introduced in
paper III, and may be interpreted as the angle through which the wing rotates during one
chord of translation.

Equation (11) highlights the importance of rotation in a quasi-steady analysis of hovering
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animal flight. The flapping velocity U varies linearly along the wing, while w retains the same
value, so wc/U must be inversely proportional to the radial position of a wing element. The
effects of very small rotations are thus magnified for the basal wing area, where the circulation
due to rotation may be comparable with that from translation for much of the cycle. Rotation
and translation are out of phase during the wingbeat, so w¢/U becomes infinitely large for
the entire wing at either end of the cycle and must dominate the quasi-steady analysis there.
The circulation due to translation, however, will be more important for distal wing areas in
the middle of each half-stroke.

The total quasi-steady circulation around a wing element may remain roughly constant for
much of each half-stroke. The rotational circulation I, increases at the end of a half-stroke
because w is positive, offsetting the reduction in I'y that must occur as the flapping velocity
drops to zero; it will be shown in §6.4 that this compensation might result in a nearly constant
value of I’ for much of the wing from the middle to the end of each half-stroke. At the beginning
of each half-stroke w is negative, though, and would reduce the circulation if the wing rotated
uniformly. In paper III it was found that the wing flexes across the chord at this time: the
anterior half of the wing completes rotation while the flapping velocity is still very small,
producing a cambered profile as the wing accelerates into the half-stroke. Most of the camber
then disappears as the flapping velocity increases and the posterior wing area completes
rotation. The effect of this differential rotation may be interpreted as a profile with camber
inversely related to the translational velocity. Camber increases a’ for a profile by effectively
reducing a,, and so increases the translational circulation I';. Thus the profile changes at the
beginning of a half-stroke may also enhance I'; at low flapping velocities, but this cannot be
assessed quantitatively without more extensive data.

The quasi-steady lift L; on a wing in translation and rotation is equal to pUI’;, where the
circulationis given by equation (11). If the quasi-steady circulation is roughly constant during a half-stroke,
then the mean lift must be proportional to the mean flapping velocity U. The previous quasi-steady
analyses of hovering discussed in paper I did not consider the effects of rotation, and assumed
that the mean lift was proportional to the mean square of the flapping velocity. The complete
expression for the quasi-steady lift coefficient is

Cp, = 2n[sina + (we/U) 3—%,)] & 2n[a’ + (we/U) 3—4,)]. (12)

Whenever Cy, is dominated by the wc/U term, or else &’ is inversely proportional to U, then
the section lift will be proportional to the first power of velocity.

If the quasi-steady circulation is nearly constant, as suggested by the discussion above, then
CL, must be proportional to 1/U during the half-stroke. The implications of this are twofold:
(1) the assumption of a constant Cy, in solving for a mean lift coefficient by the usual quasi-steady
analysis is invalidated, and (i) Cy, must reach values larger than the maximum experimental
CL, max When the flapping velocity is small. Although the second point appears to contradict
experiments, this does not really provide an excuse for dismissing the theoretical considerations:
values of Cf, max measured under steady translation cannot be applied directly to the conditions
of rotation and translation. I shall return to this point after other arguments and related
experiments are presented in later sections.
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4. UNSTEADY AEROFOIL THEORY
4.1. Wake vorticity

The Kutta condition is one of the foundation stones of aerodynamic analyses, and the
circulation around a section in unsteady motion is assumed to adjust instantaneously so that
the trailing edge velocity is always finite. The other condition that must be satisfied is a
consequence of Kelvin’s circulation theorem; whenever the strength of the bound vortex changes
by some amount d/”, an equal but opposite amount of circulation —dJ” must be shed into the
wake from the trailing edge. Thus the algebraic sum of circulations about the section and all
shed vortices in the wake is zero. This is shown in figure 44 for a section that was suddenly
set in steady linear motion: the circulation I" about the aerofoil is exactly balanced by the
‘starting vortex’ of strength — I left behind. The air between the two vortices acquires a
downward velocity and momentum because of them, and the lift on the aerofoil can be
interpreted as the reaction to the time rate of change of this momentum: as the distance between
the bound and starting vortices increases, more air is given a downward momentum.

S R B

bound starting
vortex vortex

Sy | (o

U

FiGurE 4. (a) The starting vortex balances the circulation of the bound vortex, and the air between is given downward
momentum. (6) The starting vortex induces a downwash velocity w at the § chord point, changing the direction
of the relative velocity. (c) Representation of bound and shed vorticity as continuous distributions instead of
discrete vortices.

The rotational air motion associated with shed vortices also influences the flow around the
section, producing a change in the effective angle of incidence a; in the same manner as the
trailing vortices for a wing of finite span. The flow around a single vortex follows circular
streamlines, and the velocity w of this vortex motion is inversely proportional to the radius
r of the streamlines: ’

w = I/2mr, (13)
where I' is the strength of the vortex. (This equation does not hold for very small values of
r because of a viscous ‘ core’ that tends to rotate uniformly, avoiding an infinite velocity atr = 0.)
Thus the starting vortex of strength —I" will induce a downwash velocity at the aerofoil
w=—1I/2nl, as in figure 45, where [ is the distance between the starting vortex and the
three-quarters chord point. This changes the velocity ‘seen’ by the section from U to the relative
velocity U,. It also decreases the effective angle of incidence a; from &’ by a small amount e,
where € = tan™' (w/U) ~ w/U. By combining this result with equation (2), which gives the
Kutta circulation for translation, e~ —la'c/l, (14)
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and the effective angle of incidence can be written as
a,=a' +e=xa (1—1/l). (15)

The downwash of the starting vortex reduces a; when the aerofoil is close to it, but the effect
falls off inversely with /.

The instantaneous circulation I" around the section must satisfy the Kutta condition for
the induced velocity of wake vorticity as well as the quasi-steady motion. The circulation

corresponding to o is
I’ = ncUa; = ncUa’ + ncUe,
(16)
=T +T;~TI'((1—%/]);

I’ may therefore be regarded as the sum of the quasi-steady circulation I’y and the circulation
induced by the wake vorticity I';. The influence of the starting vortex reduces the net circulation
I’ required for the Kutta condition, though this effect is again inversely proportional to /, and
I asymptotically approaches the quasi-steady value as the aerofoil moves along the flight path.
Jensen (1956) used this type of analysis to show that the effect of the starting vortex is negligible
in locust flight because of the large values of /, and concluded that a quasi-steady approximation
was valid for that case.

The amount of vorticity shed into the wake from the trailing edge balances the change in
I' and is equal to —(dI’/dl)dl: this is proportional to [72, so the section must deposit
progressively weaker vorticity in the wake. Instead of the discrete starting vortex considered
in figure 44, b, a better model of the wake would be a continuous distribution of vorticity — a
vortex sheet — as shown in figure 4¢. The downwash angle € and the induced circulation I'; were
calculated above assuming that all of the wake vorticity is located at the starting point. This
is a fair approximation after the section has moved several chord lengths, because most of the
wake vorticity is concentrated near that point. For a proper analysis, however, the spatial
distribution of wake vorticity must be taken into account. Similarly, the bound vortex is but
a crude representation of the vorticity distributed along the upper and lower surfaces of the
section, and the aerofoil may be replaced by another vortex sheet.

This simple analysis of the starting vortex has led us to unsteady aerofoil theory through a
side door, avoiding the trauma of a more brusque introduction. A complete description of the
flow around a section must include the quasi-steady motion (U, a’ and w) and the induced
velocity of all wake vorticity. The instantaneous circulation I” for the aerofoil may be regarded
as the sum of two terms: (i) the circulation satisfying the Kutta condition for the quasi-steady
motion, Iy, and (ii) that satisfying the condition for the induced velocity of the wake vorticity,
I';. As the circulation around the section changes in sympathy with the demands of I’y and
I';, new vorticity is shed into the wake from the trailing edge. The key process in unsteady
aerofoil theory is solving for a vortex system, representing the continuous distribution of bound
and wake vorticity, that is consistent with these general requirements for an aerofoil executing
some arbitrary motion. In principle, unsteady theory simply adds the effects of wake induced
circulation to the quasi-steady analysis: this process is illustrated by the crude analysis of the
starting vortex above, which is approximately correct when the vortex is at least one chord
length behind the trailing edge. In practice, however, unsteady theory is rife with rather
unpleasant integral equations.

The unsteady effects associated with wake vorticity depend on the distance between the
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section and a particular vortex in the wake. Some non-dimensional measure of distance along
the flight path is convenient, and A will denote the distance in chord lengths from the trailing
edge to its initial position. The fofal number of chord lengths travelled by a section during a
half-stroke will be especially important, and it is given by

A = dr/e, (17)

where @ is the stroke angle in radians and r is the distance from the wing base. 4 will vary
along the wing, of course, so a mean value 4 is derived for the mean distance travelled by the

hord: —
fean chor A=10R/c =10 R, (18)
where R is the wing length and A is the aspect ratio, equal to the wing span divided by the
mean chord. (The reader should note that Weis-Fogh (1973) used A for the total distance in
chords travelled by the wing element at 7,(S), which was defined in paper II. Although this
reflects the prejudice of his quasi-steady analysis, my choice of definitions is no less arbitrary:
A is simply easier to calculate.)

TABLE 1. VALUES OF 4 FOR SOME HOVERING ANIMALS

A'is the mean distance travelled by the wing during a half-stroke, divided by the mean chord. The identification
code ID and figure number, if necessary, are given for those insects from paper III. Other references:
(1) R. A. Norberg (1975), (2) U. M. Norberg (1975), (3) U. M. Norberg (1976), (4) Weis-Fogh (1972).

A reference
inclined stroke plane
Aeschna juncea 2.5 (1)
Episyrphus balteatus 2.3 (HFO08, figure 10, paper 3)
E. balteatus 2.4 (HFO08, figure 11, paper 3)
Ficedula hypoleuca 1.9 (2)
Plecotus auritus 3.2 (3)
horizontal stroke plane
Amazilia fimbriata fluviatilis 3.6 (4)
Apis mellifera 3.8 (HBO1)
Bombus hortorum 34 (BB04)
B. lucorum 3.8 (BBO8)
E. balteatus 34 (HFO07)
Eristalis tenax 3.3 (DFO1, figure 12, paper 3)
E. tenax 3.2 (DFO1, figure 13, paper 3)
Coccinella 7-punctata 5.4 (LBO4)
Tipula obsoleta 5.8 (CF02)
Tipula paludosa 5.9 (CF04)

Values of A4 are presented in table 1 for the insects considered in paper I11 and other hovering
animals taken from the literature. The values are very similar to Weis-Fogh’s, and they fall
into three distinct groups. 4 is lowest for the animals that hover with an inclined stroke plane,
and their wings move only 2 or 3 chord lengths during each half-stroke. The remaining animals
use a horizontal stroke plane, and appear to be divided into two groups. 4 is between 3 and
4 for the drone-fly Eristalis, the honey bee Apis, the bumble bees Bombus, and the
hummingbird Amazilia; it is particularly interesting that the hover-fly Episyrphus also joins this
group when it uses a horizontal stroke plane. The ladybird Coccinella and crane-flies Tipula,
however, have values of 4 between 5 and 6.
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4.2. The Wagner effect

In one of the first major breakthroughs in unsteady aerofoil theory, Wagner (1925) analysed
the growth of circulation around a section when the quasi-steady circulation changes abruptly.
This may be regarded as the kernel of unsteady processes because, in the limit, the effects of any
arbitrary motion can be reduced to a series of infinitesimal step changes in the quasi-steady cir-
culation. His analysis applies directly to the growth of circulation around a section suddenly set
into translational motion, which was crudely modelled in the preceding section, and is known as
the Wagner effect. Figure 5a shows his results for the growth of circulation and lift, expressed
as fractions of the quasi-steady values, as a function of the non-dimensional distance A. The
wake vorticity has a strong influence when A is small, as expected, and even after six chords
of travel the circulation and lift are only 909, of the quasi-steady values. Walker (1931)
experimentally confirmed Wagner’s theory for a symmetrical profile (RAF 30) at an angle of
attack well below stall, and his results are indicated by the dashed line.

’
q

I'/T,and L'/L

n O

predicted I

onset of stall

T/ T pax
—
|

I .. in steady stall

Ficurke 5. (a) The growth of circulation and lift, expressed as fractions of the quasi-steady values, as predicted by
Wagner’s theory. The dashed curve shows Walker’s (1931) experimental results. (4) Delayed stall at an
incidence greater than the steady stall angle, from Francis & Cohen (1933). I" grows towards the predicted
I', instead of the maximum value I, limited by steady stall, until the first signs of stalling are detected.

In unsteady aerofoil theory, vorticity shed into the wake always causes the instantaneous
circulation to change more slowly than I';. This is clearly evident for Wagner’s effect, where
the induced circulation from starting vorticity reduces I" from the quasi-steady expectation at
the beginning of motion. Similarly, if the angle of attack is suddenly decreased for an aerofoil,
then I' slowly decays to the new value of I';. When the quasi-steady parameters change
gradually with time, the wake vortices are weak and do not significantly affect the flow around
the section; thus I'is close to I'y and the quasi-steady approximation is valid. The instantaneous
circulatory lift for unsteady motion can be derived from the time rate of change of momentum
for the entire bound and wake vortex system. The lift is not simply equal to pUI in unsteady
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motion; figure 5a shows that the lift is 50 9, of the quasi-steady value at A = 0, even though
the instantaneous circulation is zero at that point. Like the circulation, the lift sluggishly follows
the quasi-steady value because of wake vorticity.

4.3. Gross circulation changes in hovering

The circulation around a wing element undergoes dramatic changes during each half-stroke
of hovering flight. Consider first the case of a horizontal stroke plane, as in figure 64. Because
the flapping velocity is reversed each half-stroke, the sense of the circulation must also reverse
to provide the required vertical force. If the wingbeat is symmetrical, then the circulation on
the upstroke —I'is equal but opposite to that on the downstroke I'; and it must pass through

w (O (b)

=

downstroke

B

upstroke

Ficure 6. Gross circulation changes for hovering flight with a horizontal stroke plane. (a) The wing circulation
reverses sign each half-stroke. (4) The shed vorticity corresponding to these changes in circulation forms the
vortex wake in this two-dimensional view. The stopping and starting vortices provide a boundary around the
downwash jet.

zero during the transition at either end of the cycle. At the beginning of the downstroke, starting
vorticity of strength —I" is shed as the circulation grows around the section. The circulation
must be lost at the end of the downstroke, and is shed in the form of a ‘stopping vortex’ of
strength I". This process is repeated on the following upstroke, but the signs of the circulations
and the placement of ‘starting’ and ‘stopping’ vortices are reversed. The vortex pair generated
each half-stroke moves downwards, and forms the vortex wake that extends below the animal.
Figure 64 shows a two-dimensional view of this wake, and the full three-dimensional structure
will be considered in paper V. For animals that use an inclined stroke plane, the circulatory
lift is insignificant on the upstroke, and substantial vortex pairs are only created on the
downstroke.

If the quasi-steady circulation is roughly constant during a half-stroke, the instantaneous
circulation should grow steaaily in a manner similar to the Wagner effect. The total distance
A travelled by the wings is small, so the circulation and lift should be well below the quasi-steady
expectation. The effect will be especially harmful for animals that use an inclined stroke plane,
where A is typically less than 3. For animals that use a horizontal stroke plane another difficulty
arises, because each starting vortex is very close to the stopping vortex of the preceding half-stroke.
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They are both of the same sense, and may even be shed together as one large vortex during
rotation, so the downwash experienced by the wing should be nearly double the usual value
and the Wagner effect will be aggravated. Finally, there are problems with the decay of
circulation as well as the growth of it. Since the Wagner effect is symmetrical with regard to
changes in the quasi-steady circulation, the shedding of vorticity at the end of a half-stroke
should be just as slow as at the beginning. Thus the circulation will decay as gradually as it
grows, and will interfere with the build up of circulation on the following half-stroke. To prevent
this interference, some mechanism is required that sheds the vorticity more rapidly than the
considerations so far.
4.4. Virtual mass forces

Additional forces on an aerofoil arise in unsteady theory because of the virtual wing mass,
which was introduced in paper I1. The contribution of the virtual mass forces to the section
lift is usually derived assuming that e is small, and is given by

2

r z}pncz[%—i—a;c(fo—%)+wU], (19)
where z is a distance measured perpendicular to the flight path, positive downwards (see Fung
1969). The virtual mass per unit span, }pnc?, is the mass of air set in motion when the section
accelerates perpendicular to its chord: the centre of virtual mass is located at the mid-chord
1;. Thus the first two terms in the square brackets represent the force associated with acceleration
of the centre of virtual mass normal to the flight path because of linear and rotational motion,
respectively. The third term is a sort of quasi-circulatory lift, that results from an ‘apparent’
circulation produced as the virtual mass rotates with the section.

Osborne (1951) suggested that virtual mass forces may play an important role in flapping
animal flight. Both d?z/d# and dw/dt are periodic functions with a mean value of zero over
a half-stroke, however: the mean acceleration of the section normal to the flight path must
be zero. Thus the first two terms of equation (19) cannot contribute to the mean wing forces
in flight. I cannot prove by inspection that the mean value of U is also zero over a half-stroke,
but it must be very small because of the symmetry of the kinematics. Therefore none of the
virtual mass forces will significantly alter the mean lift of the wing, although they will affect
the instantaneous values. Even though the approximation of equation (19) is valid only for
small a, these arguments apply equally well to a more general analysis.

Virtual mass forces also contribute to the wing drag, but the mean force is again zero because
there is no net acceleration of the wing parallel to its path during a cycle. The flight muscles
may not appreciate this mathematical nicety, though, if the required inertial torques at the
wing base are supplied by the muscles instead of an elastic system. The ‘drag’ that arises from
virtual mass forces is strictly analogous to the inertial force associated with accelerations of the
wing mass, and can be calculated if the accelerations of the centre of virtual mass at ¢ are known.
Unfortunately, all of the data needed for this calculation could not be measured in paper III:
the axis of rotation ,50 and the angle of attack a. Thus the instantaneous values cannot be
estimated, but we can still calculate the work done against virtual mass ‘drag’, which is of
primary interest. Consider first the work done in accelerating the mass of both wings at the
beginning of a half-stroke. This work must equal the kinetic energy gained by the total wing
mass, 31, (d¢/d?)2% ., where I, is the moment of inertia for both wings and (d¢/d¢)yax is the
maximum angular velocity of flapping. A negative amount of work with the same magnitude
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must be done to decelerate the wings at the end of a half-stroke, and this will cost metabolic
energy if the muscles are used. The chord is nearly perpendicular to its motion as the wings
change velocity at the ends of a half-stroke, so the virtual mass undergoes similar accelerations
and decelerations. The work done imparting kinetic energy to the virtual mass is then
1,(d¢/det)2, ., where [, is the virtual moment of inertia for both wings. (According to the
definitions in paper II, I, is equal to the second moment of virtual mass v,, and I, is similarly
equal to m,.)
4.5. Applicability of unsteady theory

In spite of the useful discussions provoked by unsteady theory, it cannot be rigorously applied
to hovering animal flight. Many authors (e.g. Wagner 1925; Glauert 1929; Theodorsen 1935;
Kissner 1941; Kdrméan & Sears 1938) have used analytical approaches to conventional
unsteady problems with success, largely because of simplifying assumptions that are not tenable
for our interests. The equations are linearized by considering a thin aerofoil with very small
mean angle of attack and camber, moving at a constant mean velocity while subjected to
infinitesimal variations of velocity and attitude. Furthermore, the wake is assumed to be planar
and stationary with respect to the undisturbed air: the wake vorticity remains where it is
deposited along the flight path, and does not move under its own induced velocity field. These
simplifications are reasonable for normal unsteady motions such as wing flutter and, perhaps,
the fast forward flight of birds. Mollenstadt (1980) provides a general review of the application
of unsteady theory to bird flight, and a new three-dimensional unsteady theory for birds can
be found in Phlips ¢t al. (1981). The approximations of unsteady theory are hardly suitable
for hovering animal flight, however. The unsteady wing motion is large in amplitude with zero
mean velocity, and the wake vorticity convects downwards at a substantial speed in the jet
formed by the beating wings. Modern developments in unsteady aerofoil research are attempts
to relax various assumptions underlying the thin-aerofoil theory (McCroskey 1982), but the
progress to date still lags far behind what is required for hovering flight. Several authors have
derived unsteady theories for helicopter rotors, which are closer to our interests (see Bramwell
1976 for review), but the linearized equations and differences in wake geometry still inhibit
a straightforward application of their results.

A sophisticated theory of hovering animal flight could probably be derived in a manner
similar to helicopter rotors, but I think substantial progress can be made at this time using
more qualitative deliberations with the mathematics firmly under control. Indeed, physical
deliberations are a prerequisite to the identification of the aerodynamic features that must be
incorporated in a detailed theory. We have seen that large amplitude wing rotation and the
formation of leading edge separation bubbles are likely to be important aspects of hovering.
The latter are particularly troublesome, and have been investigated numerically for relatively
simple motions by breaking the shed vortex sheet into a number of discrete vorticies (Clements
& Maull 1975; Sarpkaya 1975; Sears 1976; Kiya & Arie 1977; Katz 1981). Qualitative
features of the flow pattern have been simulated quite well by this approach, but further
refinements are generally needed for better quantitative accuracy. After the leading edge
bubbles are satisfactorily modelled, we would have to find the vorticity distribution in the wake
of the hovering animal, probably relying on numerical methods again. A complete three-
dimensional iterative analysis would be required to determine the convoluted vortex structure
of the wake, which will be discussed in paper V, and there is every chance that the process
would not be convergent. Apart from the difficulties often encountered when representing a
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wake by discrete vortex elements in numerical work, the problem is again much more
complex than the analogous one for rotors.

The computing time for such a detailed unsteady theory is likely to be astronomical, and
alternatives must be found. Based on some judicious physical approximations instead of
mathematical ones, the vortex theory of paper V offers a means of estimating the lift production,
induced power requirement and induced velocity field from the circulation around the wing
elements. The induced velocity estimate is probably too crude for the calculation of the induced
circulation around the wings, and hence for finding the continuous distribution of bound and
wake vorticity that satisfies the unsteady motion. Although the theory does provide the basic
framework necessary for an extension of the unsteady helicopter theories to hovering animal
flight, such an extension would be premature with our limited knowledge about separation
bubbles. Furthermore, there are other possible aerodynamic mechanisms for the generation of
circulatory lift that need to be considered, and that lie outside the realm of conventional
unsteady theory. The best that can be achieved at present is to identify probable aerodynamic
mechanisms for hovering flight, and to postulate how the circulation around wing elements
is likely to vary during the wingbeat. These postulated circulations can then be used in the
vortex theory of paper V.

5. DELAYED STALL

Except for the discussion on stall in steady translation, the previous sections have been
concerned largely with aerofoils at small angles of attack because this case is most amenable
to theoretical analyses. Some very interesting experimental results have been obtained for
aerofoils in unsteady motion with large values of &, though, and these are of great importance
to hovering flight. Francis & Cohen (1933) repeated Walker’s experiments on the growth of
circulation around a section suddenly set in translational motion, but the angle of incidence
was greater than the one at which the wing stalls in steady motion. The circulation grew in
a manner similar to Wagner’s theory for the first 3 chords of travel and then remained
approximately constant up to 5 chords, when measurements ceased (Figure 55). Although the
experiment clearly departs from the linearizations assumed in Wagner’s theory, the agreement
is quite good for the first three chords of travel. At that point the first signs of stalling were
detected, and the circulation began to plateau. The surprising result was that the circulation
did not approach the maximum observed value for steady stalled flight, but grew for the first
3 chords towards the circulation that would be theoretically predicted by equation (2) in the
absence of stall considerations.

The results of Francis & Cohen (1933) are an example of delayed stall: an aerofoil can travel
several chord lengths at large incidences before the separation associated with stall begins, and
large transient circulations can be developed during that period. Even though the Wagner effect
was still operative, reducing the effective angle of incidence for small A, Francis & Cohen (1933)
measured circulations greater than the steady stalled value after only 1.5 chords of travel, and
which exceeded that value by some 40-55 9, when stall finally began. The enhanced circulation
must eventually be lost as the flow separates from the upper surface and the steady case is
realized, but this does not occur for at least 5 chords of travel. Maresca et al. (1979) have also
demonstrated a delayed stall for an aerofoil at large angles of incidence executing oscillations
parallel to the airstream of a wind tunnel: large circulatory lifts were measured as the aerofoil
moved forward in the cycle. These corresponded to unstalled flow over the upper surface.
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Rotation provides a second method of delaying stall for a translating wing. If an aerofoil
in steady translation is given a slight rotational velocity with w positive, then the stall is delayed
until higher angles of incidence. Enhanced values of Cy, j,x are thus obtained, and they tend
to increase with the rotational velocity (Kramer 1932). This phenomenon, known as Kramer’s
effect, was further investigated by Farren (1935). He also found that the aerofoil stalls at smaller
incidences and that C}, p,y is reduced for negative rotational velocities, that is the aerofoil rotates
from angles of incidence above stall to below. Itis this influence of rotation on stalling behaviour
that prompted my remark in § 3 that values of Cy, j,5 measured under steady translation cannot
be applied to the conditions of rotation and translation.

Fung (1969) summarizes the experimental results on Kramer’s effect, and states that the
increase in the maximum lift coefficient above the steady stall value is equal to 21.7 w¢/ U for
values of we/ U greater than 0.003 (0.17° per chord of travel). The highest value tested is only
0.042 (2.4°/chord), far below the values near unity observed for hovering flight (paper III),
but this still increased Cp, yax by an impressive 0.9. Using equation (12) of the quasi-steady
assumption, it can be shown that these small rotational velocities do not significantly alter Cy,
simply by increasing the angle of incidence at the § chord point; the enhanced lift coefficients
at high angles of incidence must be the result of a delayed stall instead.

The effects of large rotational velocities on model flapping wings was investigated by Bennett
(1970). Although wc/U cannot be calculated from his published data, it was probably much
greater than in the experiments above. The model wing was rotated rapidly in the middle of
the downstroke, which does not occur in hovering, and generated an increased lift when w was
positive. He suggested that the results were probably due to delayed stall rather than the
quasi-steady rotational lift, but this cannot be determined for certain. In either case, the results
are remarkable: lift was still produced at angles of incidence up to about 70°. Flow visualization
studies by Riippell (1977) on model profiles of the fulmar wing (Fulmarus glacialis) also indicate
that stall can be delayed to very large angles of incidence when flapping wings are rotated at
high velocities. ‘

Delayed stall is the only conventional unsteady mechanism that can produce circulatory lift
in excess of the maximum observed for steady motion. To some extent it removes the limitations
imposed by stall on aerodynamic theories, so that predicted lifts can be attained for a brief time
at large incidences. It is therefore a strong candidate for producing the high lift coefficients
required of animals hovering with an inclined stroke plane (papers I and VI), where Cy, is too
large to be explained by quasi-steady high lift devices, such as the alula, separated primaries
and strong cambering. Delayed stall permits operation of the wings at large incidences over
the short distance travelled in each half-stroke, generating enhanced circulations to compensate
for the Wagner effect. As the angle of incidence increases towards the end of a half-stroke,
Kramer’s effect may also be involved in the delay of stall. The only question is whether delayed
stall can be effective for wings that already show a gradual stall in steady motion: Vogel (1967)
suggested that Kramer’s effect would be ineffective for Drosophila wings because they do not
stall in the usual manner found at high Re, and still produce lift at large incidences even in
steady motion. However, more recent numerical studies on the flow around thin aerofoils at
high incidences reveal that steady ‘stall’ can be a very dynamic process (Sarpkaya 1975 ; Kiya
& Arie 1977; Katz 1981). Leading edge bubbles periodically grow and then break away from
the upper surface, alternating with the periodic shedding of vorticity of the opposite sense from
the trailing edge; a highly organized vortex wake structure develops, similar to a Kdrmdn vortex
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street. The force coefficients vary periodically with the vortex shedding, and peak values can
be considerably in excess of the means. Over the short distances travelled by the wings during
hovering, it should be possible to achieve larger leading edge bubbles, and hence greater
circulatory lift, than those suggested by the mean results from steady stall. I therefore think
that delayed stall will be quite effective for the insect wings, contrary to Vogel’s conclusion,
but experimental verification is obviously required.

6. PRONATION AND SUPINATION
6.1. The fling mechanism

Until now the discussion has primarily centred on the aerodynamic events associated with
translation of the wing during a half-stroke. If strong vortex patterns are produced during the
rapid rotations of pronation and supination, then this picture may need modification on the
following half-stroke. Weis-Fogh (1973) proposed such a scheme with a new circulatory lift
mechanism, the fling, to explain the high lift coefficients required for flight of the small wasp
Encarsia. Before beginning a downstroke the wings are ‘clapped’ dorsally with longitudinal wing
axes horizontal, as seen in vertical section in figure 7a. The wings then ‘fling’ open about
their trailing edges, and the flow of air into the opening gap creates equal but opposite
circulations around the wings. The magnitude of this circulation in an inviscid fluid has been
analysed by Lighthill (1973), who found that the circulation varies with the half-angle g
between the wings:

= wig(p), (20)

and the function g(f) is presented in figure 75. The wings separate when £ is about j& at the
end of the fling motion, and this results in a circulation of 0.69 wc®. Lighthill suggested that
viscous effects would modify his model a little, and form a leading edge bubble that slightly
enhanced the circulation predicted by inviscid theory.

The fling mechanism commands a great conceptual interest because it creates a circulation
around each wing before, and independently of, translation. As the wings separate and begin
the downstroke a circulation already exists around each wing, created by the rotational motion,
and the bound vortex of one wing may be considered as the starting vortex of the other. In
doing this, the fling eliminates the gradual growth of circulation in the Wagner effect and
enables circulations to be generated that are greater than the maximum value found in
translation. Ellington (1975) applied Lighthill’s analysis to the flight of Encarsia, and
demonstrated that the fling circulation was larger than that given by Cy, j,x and would produce
sufficient circulatory lift for flight. The fling mechanism is not merely of parochial interest,
however: Furber & Ffowcs Williams (1979) have investigated its application to the design of
turbomachinery.

The fling mechanism has been experimentally tested by Bennett (1977) and Maxworthy
(1979), and both have verified the creation of large circulations during the fling motion.
Maxworthy’s measurements show that the circulation at the end of the fling is some three times
that predicted by Lighthill. This circulation is primarily due to vorticity concentrated in an
enormous leading edge separation bubble (figure 8, plate 1), much larger than Lighthill
envisaged, and which contains all of the vorticity shed from the leading edge during the fling
motion. It may be considered as ‘attached’ to the wing because it follows the wing motion,
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Ficure 8. Operation of the fling in a viscous fluid. Vorticity shed from the leading edges rolls up into large leading
edge separation bubbles, which contain most of the circulation created by the fling mechanism. From
Maxworthy (1979).

(Facing p. 101)
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FiGURE 7. (a) The air motion and circulation created by the fling mechanism. g is the half-angle between the wings.
(b) The function g(f) from Lighthill (1973). The dashed lines represent a small angle approximation.

so the circulation must be defined around a curve enclosing both the wing and the bubble.
In this manner, the bubble vorticity increases the net circulation created around each wing
by the fling.

The prominent leading edge bubble must be regarded as an integral part of the fling
mechanism in a viscous fluid. Its formation is assured because of the sharp local deceleration
as the flow rounds the leading edge, and it must grow in strength as vorticity shed from the
leading edge accumulates during the fling. While the bubble and its induced velocity field
strengthen, the mean velocity of air flowing into the gap decreases — the mean inflow velocity
is inversely proportional to 4. Thus the bubble progressively dominates the flow over the upper
wing surface, disrupting the streamline pattern assumed in the inviscid analysis. Edwards &
Cheng (1982) have extended Lighthill’s analysis to include leading edge vortex shedding, and
their results compare reasonably well with Maxworthy’s experiments. The circulation around
each wing is primarily due to the concentration of shed vorticity in the bubble, and hence it
tends to increase with the opening angle instead of decrease, as Lighthill’s analysis predicted.

What happens to the enhanced circulation during the subsequent downstroke? Because it
is greater than the circulation that can be maintained in steady translation, some vorticity must
eventually be shed from the wing. The leading edge bubble may remain attached to the upper
surface during the brief downstroke, however, through the action of delayed stall in translation
and Kramer’s effect in rotation at the end of the downstroke. The bubble may grow in length
during this time, finally shedding vorticity when it reaches the trailing edge. If this does not
happen before the end of the downstroke, then most of the fling circulation contained in the
bubble should persist for the half-stroke and generate sufficient lift for flight. Bennett (1977)
found that the circulatory lift abruptly decreases after about 1 chord of travel, though,
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indicating a severe stall with complete flow separation from the leading edge. I have commented
on Bennett’s experimental evaluation elsewhere (Ellington 1980), and presented objections to
his modelling. Maxworthy (1979) investigated the persistence of the fling circulation more
carefully at Reynolds numbers more appropriate to the mechanism (13000 and 32 instead of
Bennett’s 83000). By using a three-dimensional flapping model, he determined that the fling
circulation does persist during the entire downstroke, and that the three-dimensional vortex
shedding pattern helps to stabilize the bubble.

6.2. The peel

Paper III described a kinematic variation of the fling found in the Lepidoptera and
Drosophila, called the peel: the wings curve along the chords and the separation point moves
smoothly from leading to trailing edges, rather like pulling two pieces of paper apart by their
leading edges. This is crudely illustrated in figure 94, but the resolution limits of the cine films
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FiGUuRE 9. (a) The air flow and circulation created by the peel mechanism. () The flat peel model and (c) the
circulation function f(8).

prevent a more accurate representation. In the absence of a better description, Charles
Williamson and I have analysed the inviscid flow that would be produced by a ‘flat peel’, which
is shown in figure 954.-Although only a rough approximation to the real motion, this model
incorporates most of the salient features of the peel. The chords unzip with a velocity u that
may vary with time, and the exposed chord length x remains flat with a constant half-angle
B. The circulation I" around the exposed chord is

I = uxf(B), (21)
where f(f) is given in figure 9c¢.
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The flat peel is remarkably different from Lighthill’s fling model. The circulation around
the exposed chord increases linearly with x and will therefore grow during the flat peel, instead
of decay as in his fling. This growth is to be expected because the flow field is geometrically
similar at all times. A leading edge bubble will undoubtedly form, but it should not assume
such a dominant influence: the mean inflow velocity is independent of x, so the shed vorticity
will be swept steadily along the lengthening upper surface, distributing the vorticity evenly
instead of allowing it to roll up into a large bubble. Thus the flow pattern in a viscous fluid
should not deviate too much from the inviscid model for this case. Finally, the flat peel works
best when £ is close to a right angle, whereas the fling creates the most circulation when f is
small. The circulation around each wing at the end of a flat peel would be 1.89 uc, using £ equal
to in as before. To compare the flat peel with the fling we will assume that ¥ and w are constant
and that the motions last the same amount of time, giving u = w¢/f. The circulation created
by the flat peel is then 2.6 times that predicted by Lighthill’s model, and nearly equal to the
values measured experimentally by Maxworthy and predicted by the model of Edwards &
Cheng.

The flat peel, in short, overcomes many of the problems associated with the fling. It creates
large circulations without the formation of an enormous leading edge bubble, which may have
but marginal stability in the subsequent half-stroke, and the simple inviscid analysis should
correspond more closely to the real case. Williamson has recently improved the model by
combining it with the fling in a composite model, letting the exposed chord lengths rotate after
they peel apart. This is a more accurate model of the peel motion and yields even greater
circulations. Details will be published elsewhere, along with the theory of the flat peel
(Williamson & Ellington 1984).

6.3. The clap

Before a pair of wings can begin a fling or peel, they must touch along their upper surfaces.
This is accomplished by a ¢lap motion at the end of the upstroke, described by Weis-Fogh (1973)
for Encarsia and shown in figure 10a. As the wings decelerate at the end of an upstroke, a
increases, the leading edges touch, and the wings clap together in a reversal of the fling motion.
My films of the Lepidoptera reveal that their clap is more akin to a reversal of the peel, however.
The meeting point between the wings moves steadily towards the trailing edge, as in
figure 104. The relatively rigid wings of small insects, including Encarsia, probably compromise
with a double-clap, which is a reversal of the double-fling described in paper III.

The aerodynamic implications of the clap are very interesting, and were first considered in
Ellington (1980). If we neglect any circulation remaining around the wings from the upstroke
for the moment, then the clap would create the jet motion indicated by the dashed lines in
figure 104. The vorticity shed from the trailing edge should roll up into a large bubble, which
is probably true for the reversed peel as well: the flow outside the gap moves slowly and is easily
dominated by the shed vorticity. Thus in a two-dimensional view, the clap produces a vortex
pair corresponding to a brief downward jet of air, and the wings must experience an upward
reaction force to this jet. Maxworthy (1981) has published a flow visualization photograph of
a pair of model wings executing a clap, confirming the features of this flow. The mean vertical
force from the clap can be estimated roughly using a reversed flat peel model, which avoids the
difficulties with infinite outflow velocities when g approaches zero in Weis-Fogh’s model. The
mass of air per unit span pfc? between the wings gains a velocity « in the duration ¢/« of the
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clap, and the mean force per unit span F* corresponding to this change in momentum is pfcu®.
This slightly overestimates the vertical force of the clap because some momentum is wasted
in the spreading of the jet, but the difference will be small. The force per unit span should be
integrated along the wing length to obtain the total mean force F of the clap, but we can simply
multiply it by R and use the value of the mean chord ¢ for a first approximation. This gives

F = pBiu*R = pw*eR/ B, (22)

where the expression u = wc¢/f relating the fling and the flat peel is used for the right-hand
side. Substituting data from Weis-Fogh (1973) into this equation shows that the mean jet force
of the clap in Encarsia is roughly equal to the mean lift force required of the wings for weight

support.

N

o
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Ficure 10. (a) Possible flow patterns during the clap. The solid curve indicates the circulation already around each
wing as the clap is approached. The air motion that would be produced by the clap if this circulation did not
exist is given by the dashed lines. () The clap is more similar to a reversed peel than a reversed fling for the
Lepidoptera.

Now consider the influence of the circulation already existing around each wing at the end
of the preceding upstroke, shown by the solid curves in figure 10a. This circulatory motion
isin the opposite direction to that which would be produced by the clap, and the two will cancel
each other to some extent. If the existing vorticity does negate that produced by the clap motion,
then the net vorticity shed from the trailing edge may be zero during the clap: each wing
annihilates the other’s stopping vortex. The jet that would be produced by the clap can then
be interpreted as a continuation of the downwash produced by the wing lift during the upstroke.
In this manner, the wings generate circulatory lift until they are completely clapped together,
at which time the circulation disappears. Whether one wishes to view the clap as a mechanism
for producing a momentum jet or as a method of extending the upstroke circulatory lift does
not matter for Encarsia, since the mean force is the same in either case: they are simply two
ways of interpreting the same phenomenon. It would certainly be possible to obtain an
enhanced vertical force from the jet of a robust clap, and vorticity would then be shed from
the trailing edges to form the jet boundary. A more conservative prediction, which appears
to be true for Encarsia, would balance the clap and upstroke vorticity so that the wing lift is

unchanged.
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6.4. Isolated rotation and the flex mechanism

The rotational mechanisms discussed so far offer a unique alternative to the picture of wake
vorticity in hovering flight presented in figure 6 6. The ideal use of these mechanisms, suggested
by Lighthill (1973), consists of a clap and fling (or peel) at either end of the cycle. No vorticity
would be shed from the trailing edges, and the starting and stopping vortices would be absent:
the vortex wake would contain only the circular trailing vortices produced by the three-
dimensional motion (paper V). Thus the problems of gradual growth and decay of circulation
are circumvented, and the wings generate full circulatory lift throughout the cycle. These
problems still exist, however, for a wing in isolated rotation at the ends of the wingbeat — pronation
and supination without any interference from the image wing. The pattern of shed vorticity
must then agree with figure 64, but details of the shedding process are unclear and have not
been investigated yet. These details may be of prime importance, though, and warrant the
following speculation.

I suggested in §3 that the increase in the rotational component of circulation I'; towards the
end of a half-stroke may offset the decrease in the translational component Iy, resulting in a
nearly constant value of the quasi-steady circulation I'y. If this is the case, then no vorticity
will be shed as the wing decelerates and begins rotation. To test this proposition, consider the
mean rotational circulation I', demanded during pronation or supination and the mean
translational circulation I, needed for a half-stroke. I, is approximately given by inc%@,
using equation (10) and by assuming that £, equals 1. Most of the translational circulation occurs
in the middle of each half-stroke, when o is nearly constant, so I, can be estimated from
equation (2) as mcUsina’, using the value of &’ in the middle of the half-stroke. The mean
flapping velocity U of a wing element is given by #U,, where 7 is the non-dimensional radial
position and U, is the mean wing tip velocity. By using the mean value of the chord ¢ as well,
we can therefore write _ —

I'./I'y =~ wc/U2fsina’. (23)
When data from paper III is inserted into the equation this ratio is about 0.6 to 1.3 at the
wing tip (# = 1) and thus around 2 at the middle of the wing. Many approximations have gone
into this estimate, but the general conclusion should not be in error: the mean circulation
associated with rotation at the ends of the cycle is comparable with, if not greater than, the
circulation corresponding to translation of the wing. From these mean values we may infer that
the magnitude of I, is sufficient to prevent the loss of any existing circulation at the end of
a half-stroke and, in fact, probably increases it.

Although enhancing the circulatory lift at the end of a half-stroke, this complicates events
considerably at the beginning of the following one, when the existing vorticity and new starting
vorticity (of the same sense) must be shed before the required circulation can grow around the
wing. If rotation is completed without loss of existing circulation, then the growth of new
circulation in the next half-stroke will be seriously delayed by an exaggerated Wagner effect
while the necessary shedding occurs. There might be a way around this, however, if the
rotational circulation is indeed greater than I';. If it is assumed that this is true, the existing
circulation will remain unchanged until w exceeds a certain value. I" will begin to increase at
that time, and vorticity of the opposite sense must be shed to satisfy Kelvin’s circulation
theorem: this vorticity is, in fact, the ‘starting vortex’ for the additional circulation from
rotation. Shedding will probably begin near the middle of rotation, when the wing is
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perpendicular to the stroke plane. The vorticity would normally be shed from the trailing edge
because of its greater velocity and shear stresses, arising from wing rotation about an anterior
axis. The wing flexes at this time, however; the trailing edge is almost stationary while the
leading edge continues rotation. As shown in figure 11, this may promote shedding at the leading
instead of the trailing edge. The increase in circulation AI is thus balanced by shed vorticity
of strength — AT in a separation vortex at the leading edge. Meanwhile, the ‘bound’ vorticity
is likely to roll up and accumulate as it flows around the stationary trailing edge. The wing
then begins to accelerate into translation as it unflexes, and the leading edge bubble should
attach to the upper surface while the other vorticity is left behind as a combined stopping and
starting vortex.
r

I'+Ar
Ficure 11. The vorticity patterns suggested for the flex mechanism in isolated rotation. See text for explanation.

This mechanism is highly fanciful and speculative, but it is the most favourable aerodynamic
interpretation I can concoct for the complicated events during isolated pronation and
supination. Vorticity of the correct sense for the following half-stroke accumulates in a separation
vortex near the leading edge, just as in Maxworthy’s fling experiments, and this vortex should
attach to the wing at the beginning of translation. If most of the opposite vorticity has also
rolled up into a vortex at the trailing edge, it will have already been ‘shed’ as the half-stroke
commences. The wing will then have a net circulation of the required sense, provided by the
leading edge bubble, and immediately experience circulatory lift. The Wagner effect should
be greatly reduced, perhaps even eliminated, if the net circulation is sufficient for the new
half-stroke.

I suppose that a catchy name must be coined to follow tradition, and therefore dub this the
flex mechanism in honour of the role of wing flexing in assuring that shedding takes place at the
proper edges. The flex mechanism relies on the gross vorticity changes produced by rotation,
and uses the wing flexing to control the pattern of vortex shedding. It is thus quite different from
the ‘flip’ mechanism of Weis-Fogh (1973), which was introduced in paper I11. By neglecting
the gross effects of rotation, he suggested that the flexing motion itself would produce important
vorticity during pronation in the manner of a clap, or reversed fling, along the flexion line of
the wing. The wing unflexes before the end of pronation, however, so the clap is immediately
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followed by a fling along the flexion line. The vorticity created around the wing halves by these
two motions must cancel out, and the net effect is zero. Because of this simple objection, I cannot
believe that the ‘flip’ is a plausible mechanism.

Nachtigall (19796) has also suggested that gross rotation of the wing could produce
circulation for the following half-stroke, but details of the pattern of vortex shedding are not
made clear. He proposes several other unsteady flight mechanisms as well, based on a detailed
kinematic analysis of the fly Phormia in fast forward flight. In general, these mechanisms rely
on brief kinematic variations and are unlikely to enhance the mean lift substantially over a
wingbeat cycle. Buckholtz (1981) measured the instantaneous forces on a blowfly tethered in
a wind tunnel, and noted a surprising lack of higher harmonics in the forces. This indirectly
suggests that Nachtigall’s other unsteady mechanisms could play no more than a minor role
during flight.

Wing flexing is not absolutely essential for the creation of useful vorticity during isolated
rotation; the general formulation of the mechanism only requires that the trailing edge be
stationary when the circulation begins to increase because of rotation. (This may be
accomplished, for instance, with a rigid wing rotating about the trailing edge.) Special problems
arise for animals hovering with an inclined stroke plane because the upstroke circulation is small,
if not zero, and hence will increase almost as soon as pronation begins. For these animals the
trailing edge must become stationary near the start of pronation if shedding is to occur at the
leading edge, creating a separation bubble that can be used on the subsequent downstroke.
The kinematic results for the hover-flies in figures 9, 10 and 11 of paper III are particularly
interesting in light of this. When hovering with a horizontal stroke plane (figure 9, part III),
the middle of pronation lies just between the half-strokes; however, pronation is delayed and
overlaps the beginning of the downstroke when the stroke plane is inclined (figures 10 and 11,
part I1I). Given the same wing flexing, this delay of pronation causes the trailing edge to become
stationary at an earlier point in rotation because of the additional motion from translation.
This phase shift effectively partitions the rotational vorticity between upstroke and downstroke:
when pronation is delayed more vorticity is shed at the leading edge, creating the larger
downstroke circulation required for hovering with an inclined stroke plane. A phase advance
of supination is also indicated on the hover-fly figures, which would use the rotational vorticity
to maintain the large downstroke circulation instead of creating new circulation for the
upstroke. At the end of supination all of the downstroke circulation must be shed as a stopping
vortex, forming a vortex pair with the starting vortex from the beginning of the downstroke.
The direction in which the pair is finally shed might be controlled by the final angle at the
end of supination, providing an exquisite control over the resultant aerodynamic force vector.
This may explain the extreme manoeuvrability of the ‘true’ hover-flies and dragonflies
hovering with an inclined stroke plane.

Savage et al. (1979) have studied the flow patterns and inviscid forces produced by a
two-dimensional flat plate model simulating the wing motion of a dragonfly hovering with an
inclined stroke plane. Based on the low-speed film data of R. A. Norberg (1975), they used an
‘idealized’ wing motion obtained by dividing the kinematics into separate phases: (i) pronation
about the leading edge or mid-chord; (ii) an initial rapid translation in the downstroke (the
‘scull’) ; followed by (iii) a much slower translational phase (the ‘pause’); (iv) supination about
the leading edge; and (v) an upstroke with uniform velocity. The ‘scull’ and ‘pause’ phases
of the downstroke are unlike any wing motion previously described for an insect, though, and
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cannot be seen in the high-speed film results of Chadwick (1940) for a tethered dragonfly Ladona
exusta; high-speed films of free hovering flight are obviously required to resolve the downstroke
motion. Savage ¢t al. (1979) found that individual vortex pairs, corresponding to ‘starting’
and ‘stopping’ vortices, were created by each phase of the cycle. This is to be expected because
the kinematic phases were separated, and results in a very complicated vortex wake instead
of the ideal one suggested above for properly coupled rotations and translations. They did
observe robust vortex shedding during rotations, however, that was comparable in strength to
the shedding during translation. They also found that a strong leading edge vortex formed
during the rapid ‘scull’ on the downstroke, and it was not shed during the following ‘pause’
period; this may be interpreted as a ‘delayed stall’ in translation according to the discussions
of §5.
6.5. The rotation series

An isolated rotation is normally observed for pronation with an inclined stroke plane, and
for supination in general. The pronating wings are usually separated by less than a chord length
when the stroke plane is horizontal, though, and this may also occur in supination for some
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Ficure 12. (a) The near clap and ﬂmg or peel). Because of the small separation between the wings, the vortex
shedding of the flex mechanism is accentuated. () The partial fling (or peel) should create even larger
circulations.

insects. This motion was described in paper III as a near clap and fling (or peel) and is shown
in figure 124 in this paper; the wing motions are symmetrical about a vertical plane, and the
flow patterns are mirror images as well. The flow velocities between the wing and the image
plane are increased because of the interference, which will promote the shedding of vorticity from
leading and trailing edges. This will be especially useful in forming shed vortices at the trailing
edges as the flow is sucked through the small gap, so the near clap and fling may enhance
the shedding pattern proposed for isolated rotation and should result in greater net circulations
as translation begins.

As the separation distance decreases between the rotating wings, they begin to touch along
the posterior region of the chords in the latter half of rotation, producing a partial fling or peel
(figure 1254). The clap phase, however, is not very different from the near clap. The circulation
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created around each wing during the brief fling or peel may increase the strength of the vortex
bubble at the leading edge and/or annihilate some of the opposite vorticity from rotation. The
details of this are difficult to envisage, but the net result might be an increased circulation as
the next half-stroke begins, with little or no vorticity shed from the trailing edge.

We now have a complete series of rotational mechanisms if these speculations are even close
to the truth, but much experimental work is obviously required before this is known. The
vorticity produced in rotation must play an important role in hovering insect flight and, in
the light of the generally dismal performance of conventional unsteady effects, I think an
optimistic interpretation can be pardoned at this time. The key assumption throughout is that
the strength of vorticity associated with rotation is greater than that in translation, which is
supported by the crude comparison of mean values. This allows full circulatory lift to be realized
at the end of a half-stroke because the quasi-steady circulation remains nearly constant until
about the middle of rotation. Ifa complete fling or peel then occurs, circulation is created around
each wing in a straightforward manner for use on the following half-stroke. Otherwise, the
rotational motion must be carefully manipulated to position the existing and newly created
vorticity correctly. The leading edge vortex will almost certainly attach to the wing in
translation, so the net circulation at the beginning of the half-stroke will be the difference
between that vorticity and any opposite vorticity not already shed at the trailing edge. When
the wings are close together this trailing edge shedding may be accentuated, giving greater net
circulations. If the circulation is sufficient for flight, then it will not increase during the following
half-stroke and the Wagner effect might be eliminated. Furthermore, the circulatory lift can
be controlled by relatively small changes in the separation distance between the wings, as
suggested in paper III.

7. FINAL COMMENTS
7.1. Lift

The deductions in this paper are too tentative even to consider them as ‘ conclusions’. Physical
intuition is often an unreliable tool in aerodynamics, and we must await anxiously the results
of experimental investigations. It seems certain, though, that the lift forces used in hovering
flight are of a circulatory, instead of virtual mass, origin. Much of the circulation may be
attributable to the vorticity in leading edge separation bubbles, which must form around the
thin insect wings at low Reynolds numbers. Separation bubbles are just as likely to occur in
rotation as translation, providing vorticity that may be useful in the following half-stroke. The
flow field around the wings will be governed largely by the bubbles, so the exact profile shape
is probably not very important.

Animals that hover with an inclined stroke plane are especially worthy of attention because,
as discussed in paper I, the mean lift coefficient Cy, required on the downstroke is greater than
the maximum possible in steady motion Cy, may. Thisimplies that delayed stall must be operative
to maintain the enhanced circulation corresponding to the extra lift. The large downstroke
circulation could even bé created by the delayed stall of translation, when the results of Francis
& Cohen (1933) and Savage et al. (1979) are considered. If such is the case, then the circulation
grows during translation in a manner similar to that found by Francis & Cohen (1933),
reaching a peak value greater than that associated with Cy, . This is particularly likely for
birds and bats because rotational effects may be small for them: the extent of rotation is reduced
by anatomical constraints, and the rotational velocities should be correspondingly less.
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The largest values of wc/ U in paper III are found for the hover-flies using an inclined stroke
plane. This indicates a more important role for rotational effects. For them, and perhaps the
dragonflies, the circulation demanded on the downstroke may be created by the vorticity of
rotation at these relatively high angular velocities. Indeed, there are few differences between
the hover-fly kinematics for a horizontal and inclined stroke plane that can explain the
enhancement of downstroke circulation: w¢/ U increases in the latter case because of the reduced
stroke angle @, the downstroke angle of attack « is 10-15° larger, and pronation and supination
overlap the downstroke translation. The increase in a will be partially offset by the greater
induced velocity associated with an inclined stroke plane (papers V and VI). This will result
in a small change in the effective angle of attack a, that is probably insufficient to produce the
extra lift. Furthermore, the decrease in @ reduces the flapping velocity and circulatory lift,
worsening the Wagner effect, so it is unlikely that the enhanced circulation can be generated
by a delayed stall in translation. The relatively high angular velocity of pronation and its phase
shift are thus the most probable means of creating the large downstroke circulation. This would
generate circulation before translation, possibly eliminating its gradual growth in the usual
Wagner effect, and delayed stall would prevent the loss of this circulation whenever the
translational velocity is small.

We may expect the aerodynamics for a horizontal stroke plane to be similar because the
kinematics differ but little. Circulation can certainly be established before translation by a fling
or peel, and this is also likely for a partial or near fling (or peel). The effectiveness of the flex
mechanism, however, is unknown at present. If it is viable, then all of the insects in paper II1I
can create upstroke and downstroke circulation during the rotational periods. Otherwise, the
circulations will have to grow conventionally in translation. The rotational phases may still
perform a vital function in rapidly shedding the existing circulation, though, so that the build
up of new circulation on the following half-stroke is not fouled. Maxworthy’s (1979)
three-dimensional flow visualization hints at a rapid shedding after supination for his model,
but details of the process are lacking.

These considerations stray far from the usual quasi-steady interpretation of hovering flight.
The instantaneous circulation must lag substantially behind the quasi-steady value over the
few chords of translation because of the Wagner effect, unless the circulation is pre-established
by rotation. In either case, it will not follow the quasi-steady prediction. Delayed stall, another
unsteady effect, is probably important as well. The circulation required for rotation towards
the end of each half-stroke will increase Cy, as the flapping velocity decreases, provided that
the wing does not stall. The results of Bennett (19770) and others indicate that stall will be delayed
by rotation (Kramer’s effect), permitting values of Cy, in excess of Cy, ax to be realized. This
clearly violates the quasi-steady assumption, and should hold true for all the hovering insects
in paper I1I. The assumption is further broken if the delayed stall of translation is used to create
excessive circulatory lift to compensate for the Wagner effect.

The potential benefits of delayed stall and rotation should be marginal in fast forward flight,
where translational vélocities of the wing are enhanced by the flight speed and wing rotations
are reduced; the wing travels too great a distance for delayed stall to work, and wc¢/U becomes
much less than unity. The storm petrel Oceanites oceanicus may, however, be an important
exception to this general trend. The petrel ‘hovers’ over the water surface when feeding; it
is presumed to be flying into an ambient wind (Withers 1979). The kinematics are very
unusual for a bird: there is virtually no translation of the wings, only rapid pronations and
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supinations. In combination with the weak wind, this motion must provide the lift and thrust
satisfying the net force balance. Details of the rotational motion cannot be resolved from
Withers’ films, but the creation of circulation by isolated rotation must be a strong candidate
for the flight mechanism involved. This is also likely for the quivering wing motion of kestrels
as they ‘hover’ above the ground while flying into the wind.

Except for such cases, we should expect the usual quasi-steady assumption to be a reasonable
approximation to the aerodynamic events of fast forward flight: angles of incidence are small
and below stall, rotational velocities are relatively low, and the distance travelled during the
downstroke is at least an order of magnitude greater than the chord length. The results of
Cloupeau et al. (1979) are particularly disturbing in light of this expectation. They measured
the instantaneous vertical forces produced by the locust Schistocerca gregaria flying in a wind
tunnel, and compared their results to the quasi-steady predictions of Jensen (1956). The
measured lift curves were of a similar shape to Jensen’s, but approximately double in amplitude:
the downstroke vertical force was larger and the upstroke smaller. They suggest that the
differences are because of unsteady effects but cannot offer a more detailed explanation. In
fast forward flight the locust wings behave according to all the qualifications of the quasi-steady
assumption listed above. Indeed, the wing travels over 20 chord lengths during the downstroke
so even the conventional unsteady effects of wake vorticity should be negligible. These baflling
results might be explained by the dynamic characteristics of leading edge separation bubbles,
but further experimental investigation is obviously required.

7.2. Drag

Little has been said about the unsteady drag forces in hovering simply because nothing is
known and it is a more difficult topic of speculation than circulatory lift. The theory of
paper V can be used to calculate the work done against induced drag, and a treatment of virtual
mass drag forces has already been outlined, so the problem can at least be reduced to one of
profile drag. The skin friction component of profile drag is often increased in unsteady motion
because the boundary layer is thinner and shear stresses correspondingly greater. The pressure
drag component, however, may be lower if flow separation is reduced. The two effects may
cancel, giving a profile drag very close to the quasi-steady value when complete separation and
stalling are absent (Maresca et al. 1979).

As we lack more information, we may as well apply the profile drag coefficients Cp pro
measured in steady motion to the analysis of hovering. Because the angle of incidence is nearly
constant during the translation phases of the cycle, it is also reasonable to assume that Cp 5o
varies but little. Thus the profile drag can be estimated by the usual quasi-steady method, if
a mean value of the drag coefficient based on the angle of incidence is chosen. Rayner (1979)
suggested that Cp_ o can be approximated by Cp i, for hovering animals, but this neglects
the enhanced pressure drag contribution to the profile drag that must be expected at the
observed large angles of incidence. The angles of incidence were not known in Weis-Fogh’s
(1973) analysis of hovering, so he estimated the drag coefficient by dividing the calculated mean
lift coefficient by a chosen value of C,/Cp. A ratio of 7.5 was used for most insects, based
on the measurements of Jensen (1956). The drag coefficient thus obtained included induced
drag in addition to profile drag because real wings were used in Jensen’s experiments. The drag
coefficients are still remarkably low, however, and about the same as the minimum profile drag
coefficient predicted by equation (9). This is because of the abnormally low drags measured
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by Jensen. Based on the Tipula and Drosophila polars in figure 2 and an arbitrary allowance
for the induced drag contribution, I think Cp, ., is more likely to be about 0.15-0.2 at Re of
1500, increasing to perhaps 0.5 at Re around 200. Any estimates of profile drag must be treated
very cautiously, though, until measurements are made for wings executing the motions of
hovering.

I thank Dr K. E. Machin for imaginative discussions and for reading the manuscript, and
the Science and Engineering Research Council for financial support.
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sF1IGURE 8. Operation of the fling in a viscous fluid. Vorticity shed from the leading edges rolls up into large leading
edge separation bubbles, which contain most of the circulation created by the fling mechanism. From
Maxworthy (1979).
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